个人简介
s 2011年和2017年分别获得电子科技大学电子信息科学与技术电子信息工程学士学位和电路与系统专业的工学博士学位,主要研究实频技术理论、人工智能电路设计方法、宽带高效率功率放大器、RF/微波电路设计理论。
s 2017年06月—2018年10月在华为技术有限公司从事5G MIMO系统的前沿技术研究。
s 2018年10月加入bat365在线平台官方网站从事教学和科研工作。
s 主持3项国家级项目、多项校企联合的“产学研”预研项目(中兴通讯、中电集团研究所、航天研究所等)。作为主研还先后参与了多项国家自然科学基金项目、华为、爱立信、中电集团研究所等多项预研项目。研究内容来源为前沿科学科学问题和领军企业的科研需求牵引,主要探索前沿的高性能发射机技术,包括人工智能辅助电路设计技术,小型化的单片微波电路芯片设计(MMIC)、先进的超宽带高效发射机架构、5G/6G发射机应用中的宽带/多频带高效率功率放大器的电路设计理论。
本领域主流学术刊物和重要会议上发表60余篇(IEEE Transactions on Microwave Theory and Techniques, IEEE Transactions on Circuits and Systems I: Regular Papers, China Communications,IEEE Transactions on Circuits and Systems II: Express Briefs, IEEE Microwave and Wireless Components Letters, IET Microwaves, Antennas & Propagation, IEEE International Microwave Symposium等)。谷歌总引用次数1000余次,h指数19,i10指数23。
社会兼职:IEEE会员,担任China Communications, IEEE-TMTT, IEEE-TCAS-I, IEEE-TCAS-II, IEEE-MWCL, IET-MAP, IET-EL, FITEE, WIELY-JICTA, WIELY-MOTL, JCSC, IEEE-ACCESS等十余个国际期刊特邀审稿人。
实验平台和环境:依托重庆市“高性能电路设计”工程研究中心,课题组具有自主研发了功放芯片/功放模块的智能测试系统,可快速验证功放电路性能。
欢迎电路系统、微电子、电子工程、计算机等相关专业同学咨询、交流。课题组具有丰富的理论基础和工程经验,入门简单、快捷,同时为同学们提供良好的科研环境。
主持/主研的代表性科研项目:
[1] 国家自然科学基金项目,预研,具有多电流合成结点的新型功率放大器架构及智能设计技术研究(主持,2024.01-2027.12)
[2] 国家自然科学基金项目,预研,多目标条件下高效率微波功率放大器架构及解析匹配理论研究(主持,2021.01-2023.12)
[3] 头部XX企业/XX研究研所, 预研,宽带功放的非线性建模研究(主持,2023.11-2024.06)
[4] 中电集团第XX研究所,预研,高效率Doherty功率放大器技术研究(主持,2022.09-2023.08)
[5] 中兴通讯股份有限公司,预研,三频连续类高效率功放架构研究(主持,2022.08-2023.07)
[6] 中兴通讯股份有限公司,预研,宽带高效率PA架构研究(主持,2021.05-2022.06)
[7] 中兴通讯股份有限公司,预研,高效率发射机架构研究(主持,2019.12-2020.12)
[8] 国家自然科学基金面上项目,预研,耦合阵列功率放大器研究(参与,2022.01-2025.12)
[9] 中电集团第xx研究所,预研,大功率超宽带功率放大器研究(主持,2019.04-2020.03)
[10] 国家自然科学基金面上项目,预研,基于滚动时域优化的协同高效星载超宽带发射机设计理论与方法研究(参与,2022.01-2025.12)
[11] 国家自然科学基金项目,预研,基于实频技术的高效率宽带功率放大器研究(参与,No. 61271036)
代表性论文:
[1] G. Bai, Z. Dai*, J. Wang, et al. Design of Broadband Doherty Power Amplifier Based on Single Loop Load Modulation Network[J], IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2024, 1-11
[2] Z. Dai*, S. Kong, et al., Design of Wideband Asymmetric Doherty Power Amplifier Using a New Phase Compensation Technique[J], IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 1-13
[3] K. Zhong, Z. Dai*., Design of Dual-Band Doherty Power Amplifier Using a New Phase Compensation Technique[J], IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 1-5
[4] G. Bai, F. Xiao, Y. Zhong, Z. Dai*. A Circuit Solving Method for Output Matching Network Parameters of Doherty Power Amplifiers", AEU-International Journal of Electronics and Communications, 2024,
[5] X. Feng, Z. Dai*, et al. A Graphic Design Method for Broadband Doherty Power Amplifier[J]. China Communications, 2023: 1-16
[6] Y. Yao, Z. Dai*, et al. A Novel Topology With Controllable Wideband Baseband Impedance for Power Amplifier[J], Frontiers of Information Technology & Electronic Engineering, 2023, 1-10 (Early Access Article)
[7] M. Li, X. Cheng, Z. Dai*, et al. A novel method for extending the output power back-off range of asymmetrical Doherty power amplifier[J], Frontiers of Information Technology & Electronic Engineering, 2023, 24(3): 470-479., 2022, 1-10
[8] X. Ran; Z. Dai*; K. Zhong; J. Pang; M. Li. Broadband Sequential Load-Modulated Balanced Amplifier Using Coupler-PA Co-Design Approach [J]. ZTE Communications, 2022, 20(4): 62-68
[9] T. Li, M. Li, Z. Dai* et al. Analysis and Design of Class-Em Power Amplifier at Subnominal Operation [J]. IEEE Transactions On Circuits And Systems − I: Regular Papers, 2022, 69(12), 5339- 5351.
[10] R. Tong*, Z. Dai*, J. Olsson, I. Huynen, R. Ruber, and D. Dancila. Taper Transmission Line Based Measurement—An Thru-Only De-embedding Approach[J]. IEEE Transactions on Microwave Theory and Techniques, Sept. 2022, vol. 70, no. 9, pp. 4199 - 4210
[11] M. Li, Q. Li, Z. Dai*, et al. Design of ultra wideband power amplifier based on a refining of exact harmonic impedance space[J]. International Journal of Circuit Theory and Applications. Oct. 2022, vol. 55, no. 10, pp. 3614-3625
[12] Z. Dai*, K. Zhong, M. Li, Y. Jin, J. Pang, F. Xiao. Broadband Dual-Input Doherty Power Amplifier Design Based on A Simple Adaptive Power Dividing Ratio Function [J]. China Communications, 2024: 1-15.
[13] J. Pang*; C. Chu; J. Wu; Z. Dai; M. Y. Li; et al. Broadband GaN MMIC Doherty Power Amplifier Using Continuous-Mode Combining for 5G Sub-6 GHz Applications. IEEE Journal of Solid-State Circuits, July 2022, vol. 57, no. 7, pp. 2143 - 2154
[14] R. Gao; J. Pang*; T. Cai; C. Shen; W. Shi; Z. Dai; M. Y. Li; A. Zhu. Dual-Band Three-Way Doherty Power Amplifier Employing Dual-Mode Gate Bias and Load Compensation Network. IEEE Transactions on Microwave Theory and Techniques, Apr. 2022, vol. 70, no. 4, pp. 2328 - 2340
[15] X. Ran, Z. Dai*, M. Li, T. Cai and T. Li, A Wide-Band Passive Equalizer Design Approach for Improving the Gain Flatness With Multiple Peaks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 699-703, March 2022, doi: 10.1109/TCSII.2021.3110856.
[16] Z. Dai*, J. Pang, M. Li, et al. A Direct Solving Approach for High-Order Power Amplifier Matching Network Design[J]. IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 8, pp. 3278-3286, Aug. 2020
[17] Z. Dai*, R. Peng, M. Li and S. He, "Two-way Concurrent Dual-Band Power Amplifier at 0.9/1.8 GHz with Low Second Harmonic and Intermodulation," IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 749-751
[18] J. Pang*, Z. Dai, Y. Li, M. Li and A. Zhu, Multiband Dual-Mode Doherty Power Amplifier Employing Phase Periodic Matching Network and Reciprocal Gate Bias for 5G Applications[J] IEEE Transactions on Microwave Theory and Techniques 68(6): 2382-2397, 2020
[19] Z. Yang, M. Li*, Z. Dai. A Generalized High-Efficiency Broadband Class-E/F3 Power Amplifier Based on Design Space Expanding of Load Network[J]. IEEE Transactions on Microwave Theory and Techniques, 2020(SCI)
[20] J. Pang*, Li Y, Li M, Y. Zhang, X. Zhou, Z. Dai. Analysis and Design of Highly Efficient Wideband RF-Input Sequential Load Modulated Balanced Power Amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 68(5): 1741-1753, 2020
[21] Z. Dai*, S. He, et al. Lowpass Network Synthesis Using “Feldtkeller Correction Approach[J]. IEEE Access, 27970-27982, 2019
[22] Yang Z, Yao Y, Li M*, Y. Jin, T. Li, Z. Dai. Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance[J]. IEEE Transactions on Microwave Theory and Techniques, 67(2): 765-777, 2018
[23] Z. Dai*, S. He, J. Peng, C. Huang, W. Shi and J. Pang, A Semianalytical Matching Approach for Power Amplifier With Extended Chebyshev Function and Real Frequency Technique[J], IEEE Transactions on Microwave Theory and Techniques, vol. 65(10): 3892-3902, Oct. 2017
[24] Z. Dai*, S. He, J. Pang, J. Peng, C. Huang and F. You, "Sub-optimal matching method for dual-band class-J power amplifier using real frequency technique[J], IET Microwaves, Antennas & Propagation, vol. 11, no. 9, pp. 1218-1226, 2017
[25] Z. Dai*, S. He, J. Peng, J. Pang, P. Hao and C. Huang. Co-design of two-way Doherty power amplifier and filter for concurrent dual-band application[J]. Wiley Microwave and Optical Technology Letters, 59(3): 530-533, 2017
[26] Z. Dai*, S. He, F. You, et al. A new distributed parameter broadband matching method for power amplifier via real frequency technique[J], IEEE Transactions on Microwave Theory and Techniques, 63(2):449-458,Feb. 2015
[27] J. Pang*, S. He, C. Huang, Z. Dai, A Post-matching Doherty Power Amplifier Employing Low-order Impedance Inverters for Broadband Applications[J], IEEE Transactions on Microwave Theory and Techniques, vol.63, no.12, pp.4061-4071, Dec. 2015
[28] Z. Dai*, S. He; J. Pang; C. Huang, Semi-analytic design method for dual- band power amplifiers[J], IET Electron. Lett., vol.51, no.17, pp.1336-1337, Aug. 2015
[29] J. Peng*, S. He; B. Wang; Z. Dai; J. Pang, Digital Predistortion for Power Amplifier Based on Sparse Bayesian Learning[J], IEEE Trans. Circuits and Systems II: Express Briefs, vol.63, no.9, pp.1-5, 2016
[30] T. Qi*, S. He, Z. Dai and W. Shi, Novel Unequal Dividing Power Divider With 50Ω Characteristic Impedance Lines[J], IEEE Microw. and Wireless Compon. Lett., vol. 26, no. 3, pp. 180-182, March 2016
[31] Q. Li*, S. He, W. Shi, Z. Dai and T. Qi, Extend the Class-B to Class-J Continuum Mode by Adding Arbitrary Harmonic Voltage Elements[J], IEEE Microw. and Wireless Compon. Lett., vol. 26, no. 7, pp. 522-524, July 2016
专利:
[1] “一种包络阻抗控制结构、功率放大器结构”,发明专利,2022,中国(授权号:ZL202010439789.6)
[2] “一种电路参数求解方法及装置”,发明专利,2022,中国(授权号:ZL202010268407.8)
[3] “一种通用的功率放大器自动测试系统及其自动测试方法”,发明专利,2022,中国授权号: ZL201510392626.6
[4] 一种单环型网络双带 Doherty 功率放大器”202311161897.1
[5] “一种基于耦合器的多路 Doherty 功率放大器”,202311114314.X
[6] “一种多频带Doherty功率放大器的设计方法及结构”,发明专利,2022,中国(申请号:CN202210783772.1)
[7] “一种宽带Doherty功率放大器及其设计方法” ,发明专利,2022,中国(申请号:CN202310053627.2)
[8] “一种多组合模式的宽带或多带Doherty功率放大器架构”,发明专利,2023,中国(申请号:CN202210783772.1)
[9] “基于偏置切换的多模多带Doherty功率放大器”,发明专利,2022,中国(申请号:CN202210652090.7)
[10] “耦合阵列功率放大器”,发明专利,2022,中国(申请号:CN202210294803.7)
[11] “一种超宽带功率放大器偏置电路” ,发明专利,2022,中国(申请号:CN201910865363.4)
[12] “一种多带Doherty功率放大器” ,发明专利,2022,中国(申请号:CN201910799140.2)