集电系

石匆


课题组详情主页(包括成员信息、招生说明、论文列表等):https://www.corticalchip.com/

石匆,四川内江人,博士,研究员,博士生导师,首批“重庆英才”青年拔尖人才,bat365在线平台官方网站“百人计划”学者。分别于2007和2009年获得哈尔滨工业大学电子信息科学与技术学士学位、微电子与固体电子学硕士学位。2014年毕业于清华大学电子系,获电子科学与技术博士学位(参与教育部“高校-中科院博士生联培计划”,全程与中国科学院半导体研究所国家重点实验室及中国科学院大学联培)。2015-2018年进入美国哈佛大学医学院,从事博士后研究工作。2019年2月加入bat365在线平台官方网站,先后承担“片上系统(SoC)技术”、“数字集成电路原理与设计”、“数字集成电路系统与实现”等本科专业核心课程,以及“先进类脑神经网络及设计”等研究生前沿课程。

石匆博士长期从事面向多媒体智能处理的超大规模集成电路芯片设计研究,目前主要研究方向包括类脑智能计算芯片、深度神经网络加速器、高速视觉图像处理器、类脑大模型算法及其芯片设计,等等。共发表70余篇学术论文,包括IEEE JSSC、IEEE TBioCAS、IEEE TCAS-I、IEEE TCAS-II、IEEE TCSVT、ISSCC、A-SSCC等集成电路设计领域国际顶级期刊和会议,已申请和公开国家发明专利20余项,其中3项已实现成果转化。长期担任JSSC、TBioCAS、TCAS-I、TCAS-II、TVLSI、TCSVT、JCST等国际顶级期刊审稿人。承担国家重点研发计划子课题、国自然重点项目子课题、国自然区域联合重点项目子课题,多项重庆市自然科学基金重点项目(省部级),以及多家企事业单位资助的产业项目及开放课题。指导研究生多次获得各类专业竞赛国家级奖项。

课题组兼顾学术前沿和工程实践,重点培养先进人工智能领域的算法、芯片和系统开发应用的能力,具备良好的工作环境,提供优厚的科研补助、成果奖励和项目补贴。课题组与哈佛大学、清华大学、中科院等国内外顶尖科研机构具有长期密切交流合作,有大量机会去以上机构进行中长期交流访问和联合培养,也与业内众多企业有深度合作,可推荐提供大量实习机会。欢迎访问课题组主页,查阅在读和已毕业同学的学术成果、获奖评优、毕业去向等详细信息,以及招生要求和联系方式:

https://www.corticalchip.com/


代表作论文:

1. MorphBungee: A 65nm 7.2mm2 27μJ/image Digital Edge Neuromorphic Chip with On-Chip 802 frame/s Multi-layer Spiking Neural Network Learning

Tengxiao Wang, Min Tian, Zhengqing Zhong, Haibing Wang, Junxian He, Fang Tang, Xichuan Zhou, Shuangming Yu, Nanjian Wu, Liyuan Liu, Cong Shi*, 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2023, 1-3.

2. An Edge Neuromorphic Hardware with Fast On-Chip Error-Triggered Learning on Compressive Sensed Spikes
Cong Shi, Jingya Zhang, Tengxiao Wang, Zhengqing Zhong, Junxian He, Haoran Gao, Jianyi Yu, Ping Li, Min Tian*. IEEE Transactions on Circuits and Systems II: Express Briefs: 2023, 70(7), 2665-2669.

3.  TripleBrain: A Compact Neuromorphic Hardware Core with Fast On-Chip Self-Organizing and Reinforcement Spike-Timing Dependent Plasticity

Haibing Wang, Zhen He, Tengxiao Wang, Junxian He, Xichuan Zhou, Ying Wang, Liyuan Liu, Nanjian Wu, Min Tian, Cong Shi*. IEEE Transactions on Biomedical Circuits and Systems: 2022, 16(4), 636-650.

4.  A Low-cost FPGA Implementation of Spiking Extreme Learning Machine With On-chip Reward-Modulated STDP Learning

Zhen He, Cong Shi*, Tengxiao Wang, Ying Wang, Min Tian, Xichuan Zhou, Ping Li, Liyuan Liu, Nanjian Wu, Gang Luo. IEEE Transactions on Circuits and Systems II: Express Briefs: 2022, 69(3), 1657-1661.

5. DeepTempo: a Hardware-Friendly Direct Feedback Alignment Multi-Layer Tempotron Learning Rule for Deep Spiking Neural Networks

Cong Shi*, Tengxiao Wang, Junxian He, Jianghao Zhang, Liyuan Liu, Nanjian Wu. IEEE Transactions on Circuits and Systems II: Express Briefs: 2021, 68(5), 1581-1585.

6.  A Low-cost High-speed Object Tracking VLSI System Based on Unified Textural and Dynamic Compressive Features

Wei He, Jie Zhang, Yingcheng Lin, Xichuan Zhou, Ping Li, Liyuan Liu, Nanjian Wu, Cong Shi*. IEEE Transactions on Circuits and Systems II: Express Briefs: 2021, 68(3), 1013-1017.

7.   A Streaming Motion Magnification Core for Smart Image Sensors

Cong Shi*, Gang Luo. IEEE Transactions on Circuits and Systems II: Express Briefs: 2018, 65(9), 1229-1233.

8.  A Compact VLSI System for Bio-Inspired Visual Motion Estimation

Cong Shi, Gang Luo*. IEEE Transactions on Circuits and Systems for Video Technology: 2018, 28(4), 1021-1036.

9.  A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network

Cong Shi, Jie Yang, Ye Han, Zhongxiang Cao, Qi Qin, Liyuan Liu, Nan-Jian Wu*, Zhihua Wang. IEEE Journal of Solid-State Circuits: 2014, 49(9), 2067-2082.

10.  A 1000fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array and self-organizing map neural network

Cong Shi, Jie Yang, Ye Han, Zhongxiang Cao, Qi Qin, Liyuan Liu, Nan-Jian Wu*, Zhihua Wang. IEEE International Solid-State Circuits Conference (ISSCC): 2014, 128-129.

完整论文列表及更多详细内容请见实时更新主页http://www.corticalchip.com/



Baidu
sogou